翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

DRAM data remanence : ウィキペディア英語版
Data remanence
Data remanence is the residual representation of digital data that remains even after attempts have been made to remove or erase the data. This residue may result from data being left intact by a nominal file deletion operation, by reformatting of storage media that does not remove data previously written to the media, or through physical properties of the storage media that allow previously written data to be recovered. Data remanence may make inadvertent disclosure of sensitive information possible should the storage media be released into an uncontrolled environment (''e.g.'', thrown in the trash, or lost).
Various techniques have been developed to counter data remanence. These techniques are classified as clearing, purging/sanitizing or destruction. Specific methods include overwriting, degaussing, encryption, and media destruction.
Effective application of countermeasures can be complicated by several factors, including media that are inaccessible, media that cannot effectively be erased, advanced storage systems that maintain histories of data throughout the data's life cycle, and persistence of data in memory that is typically considered volatile.
Several standards exist for the secure removal of data and the elimination of data remanence.
==Causes==

Many operating systems, file managers, and other software provide a facility where a file is not immediately deleted when the user requests that action. Instead, the file is moved to a holding area, to allow the user to easily revert a mistake. Similarly, many software products automatically create backup copies of files that are being edited, to allow the user to restore the original version, or to recover from a possible crash (''autosave'' feature).
Even when an explicit deleted file retention facility is not provided or when the user does not use it, operating systems do not actually remove the contents of a file when it is deleted unless they are aware that explicit erasure commands are required, like on a solid-state drive. (In such cases, the operating system will issue the Serial ATA TRIM command or the SCSI UNMAP command to let the drive know to no longer maintain the deleted data.) Instead, they simply remove the file's entry from the file system directory, because this requires less work and is therefore faster, and the contents of the file—the actual data—remain on the storage medium. The data will remain there until the operating system reuses the space for new data. In some systems, enough filesystem metadata are also left behind to enable easy undeletion by commonly available utility software. Even when undelete has become impossible, the data, until it has been overwritten, can be read by software that reads disk sectors directly. Computer forensics often employs such software.
Likewise, reformatting, repartitioning, or reimaging a system is unlikely to write to every area of the disk, though all will cause the disk to appear empty or, in the case of reimaging, empty except for the files present in the image, to most software.
Finally, even when the storage media is overwritten, physical properties of the media may permit recovery of the previous contents. In most cases however, this recovery is not possible by just reading from the storage device in the usual way, but requires using laboratory techniques such as disassembling the device and directly accessing/reading from its components.
The section on complications gives further explanations for causes of data remanence.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Data remanence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.